MTSU
READING

MTSU-led pain medicine research findings to detect...

MTSU-led pain medicine research findings to detect potential liver failure make scientific journal

Three years of investigation conducted by a Middle Tennessee State University chemistry researcher, two of his graduate students and three researchers from the National Institute of Standards and Technology has led to a unique design for monitoring acetaminophen  — a common ingredient in pain medications — to prevent overdose, resulting in liver damage.

The findings by associate professor Charles Chusuei, doctoral student Raja Ram Pandey, master’s student Hussain Alshahrani and the other science scholars made the inside cover for the May issue of Electroanalysis, an international journal devoted to electroanalysis, sensors and bioelectronic devices. Their research was published online in February.

The group made the discovery through electrochemical detection of acetaminophen with silicon nanowires. The nanowires’ silicon, a semi-conducting element, was deposited onto glassy carbon electrodes to produce the sensing device.

Researchers in the study also include Sergiy Krylyuk, Elissa H. Williams and Albert V. Davydov of the Materials Science and Engineering Division at the National Institute of Standards and Technology in Gaithersburg, Maryland.

Research using Faraday cage

MTSU doctoral student Raja Pandey, left, and Department of Chemistry associate professor Charles Chusuei set up an experimental testing cell within a Faraday cage to screen out electrical interference in the Science Building lab, preventing it from affecting data collection. (MTSU photo by J. Intintoli)

Acetaminophen, a widely used painkiller and fever reducer, is one of the most commonly found pharmaceuticals in a household and among the most frequently identified contaminants in sewage and surface water, according to a 2013 article in Scientific American magazine, citing a International Joint Commission report from the United States and Canada.

In addition to acetaminophen, the scientists tested the function of the sensor for detecting other chemical species that also exist in the body — glucose, ascorbic acid or Vitamin C, hydrogen peroxide, folic acid, uric acid and a second dose of acetaminophen — to ensure that their presence would not result in false positive measurements, Chusuei said.

Liver failure can occur if people overdose on acetaminophen, a common ingredient in Tylenol and other pain medications.

The researchers have produced an electrode that can measure acetaminophen concentrations in real time. The device works by inducing a chemical reaction at the electrode surface that generates an electrical signal. The signal is then interpreted by a computer to determine chemical concentration.

“The sensor has potential application for monitoring toxicity in blood, detecting acetaminophen overdose,” Chusuei said. “Acetaminophen toxicity is a common cause of unintentional poisoning.”

Chusuei, a dedicated researcher and faculty member since arriving on campus in 2010, said he gains a “positive feeling” from the results.

“It’s nice to have the preliminary data to prove we can do future grant-funded work,” the professor said.

This published research marks another milestone for him, and making the cover of the journal “was a surprise result.” At an editor’s request, Chusuei spent about two days designing a graphic for the cover.

Chusuei calls Pandey, a molecular biosciences grad student, “the mover and shaker on this project” and said other undergraduate students “could very well participate in this work.”

In their Science Building laboratory, they use a Faraday cage to screen out electrical noise from the environment to obtain their experimental results.

MTSU chemistry associate professor Charles Chusuei, left, listens as doctoral student Raja Pandey explains a current-voltage plot to evaluate silicon nanowire sensor effectiveness in preventing liver damage. (MTSU photo by J. Intintoli)

“The results became a good outcome for analyzing acetaminophen concentrations at therapeutic and toxic levels in solution,” Pandey said, adding that the “experience has helped me to expand my research skills for studying fundamental scientific principles.”

“I am really satisfied being the primary research student in this project, although a lot of patience is required,” he said. “Designing the experiments, getting the results and publishing them are actually exciting events for me.”

In addition to his research, Chusuei teaches Introduction to General Chemistry (CHEM 1010), Chemistry and Crime (CHEM 1030) and Bioanalytical Chemistry (CHEM 4550/4551) as well as other courses in the master’s-level chemistry and molecular biosciences Ph.D. programs.

Chusuei said he appreciates support from the MTSU Faculty Research and Creative Activity Committee and to Joyce Miller of the MTSU Interdisciplinary Microanalysis and Imaging Center, or MIMIC, located in the Science Building, which led to obtaining key images of the silicon nanowires.

Krylyuk also acknowledged support from the U.S. Department of Commerce and National Institute of Standards and Technology.

To learn more about the Department of Chemistry at MTSU, call 615-898-2956. To learn more about MTSU research endeavors, visit www.mtsu.edu/research and www.mtsu.edu/urc for undergraduate research.

MTSU has more than 240 combined undergraduate and graduate programs. Chemistry is one of 11 College of Basic and Applied Sciences departments.

— Randy Weiler (Randy.Weiler@mtsu.edu)


COMMENTS ARE OFF THIS POST